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Abstract. To study the localization of random heteropolymers at an interface separating two selective
solvents within the model of Garel, Huse, Leibler and Orland, [Europhys. Lett. 8, 9 (1989)], we propose a
disorder-dependent real space renormalization approach. This approach allows to recover that a chain with
a symmetric distribution in hydrophobic/hydrophilic components is localized at any temperature in the
thermodynamic limit, whereas a dissymmetric distribution in hydrophobic/hydrophilic components leads
to a delocalization phase transition. It yields in addition explicit expressions for thermodynamic quantities
as well as a very detailed description of the statistical properties of the heteropolymer conformations in the
high temperature limit. In particular, scaling distributions are given for the lengths of the blobs in each
solvent, for the polymer density, and for some correlation functions. In the case of a small dissymmetry
in hydrophobic/hydrophilic components, the renormalization approach yields explicit expressions for the
delocalization transition temperature and for the critical behaviors of various quantities: in particular, the
free energy presents an essential singularity at the transition (the transition is thus of infinite order), the
typical length of blobs in the preferred solvent diverges with an essential singularity, whereas the typical
length of blobs in the other solvent diverges algebraically. Finite-size properties are also characterized in
details in both cases. In particular, we give the probability distribution of the delocalization temperature
for the ensemble of random chains of finite (large) length L, and the distribution of the numbers of blobs for
the chains that are still localized at a given temperature. Finally, we discuss the non-equilibrium dynamics
at temperature T starting from a zero-temperature initial condition.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 36.20.-r Macro-
molecules and polymer molecules – 68.10.-m Fluid surfaces and fluid-fluid interfaces

1 Introduction

Among the various subjects concerning the physics of
polymers, the behavior of heteropolymers containing hy-
drophobic and hydrophilic components in solvents are of
particular interest since they have obvious importance in
biology [1]. It is well-known for instance that in a polar
solvent, these heteropolymers prefer conformations where
the hydrophilic components are in contact with the po-
lar solvent, whereas hydrophobic components avoid con-
tacts with the solvent. The behavior of heteropolymers
in the presence of an interface separating two selective
solvents, one favorable to the hydrophobic components
and the other to the hydrophilic components, is less ob-
vious, and has been much studied recently. In the pio-
neering work of Garel, Huse, Leibler and Orland [2], a
model was proposed and studied via Imry-Ma arguments,
an analysis of the replica Hamiltonian and numerics: it
was found that a chain with a symmetric distribution in
hydrophobic/hydrophilic components is always localized
around the interface at any temperature (in the ther-
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modynamic limit), whereas a chain with a dissymmet-
ric distribution in hydrophobic/hydrophilic components
presents a phase transition separating a localized phase
at low temperatures from a delocalized phase into the
most favorable solvent at high temperatures. Experimen-
tally, the presence of copolymers was found to stabilize
the interface between the two immiscible solvents [3], since
the localization of the heteropolymers at the interface re-
duces the surface tension. By now, the predictions of ref-
erence [2] have been confirmed in the physics community
by various approaches including molecular dynamics sim-
ulations [4], Monte-Carlo studies [5], variational methods
for the replica Hamiltonian [6,7], and exact bounds for the
free-energy [8]. Mathematicians have also been interested
in this model, but the exact results obtained up to now are
still far from a complete explicit solution. The localization
at all temperatures for the symmetric case was proven in
references [9,10] by various criteria of localization on the
paths measure. In the dissymmetric case, the existence of
a transition line in temperature vs. dissymmetry plane was
proven in reference [11] where some bounds for the free-
energy were obtained in the asymptotic regimes of low and



112 The European Physical Journal B

high temperatures. Finally, the relations between various
localization criteria concerning either free-energy or path
properties have been studied in reference [12].

In this paper, we propose a new approach to study the
model of Garel et al. [2], based on a disorder-dependent
real space renormalization procedure. Since this type of
approach is not usual in the context of the thermody-
namics of classical disordered systems, it seems useful to
recall how these methods have been successfully applied
in other domains. Disordered-dependent real space renor-
malization approaches have first been introduced in the
field of disordered quantum spin chains [13–17]. More re-
cently they have been used to study random walkers in
1D disordered environments [18,19], reaction-diffusion in
1D disordered environments [20] and non-equilibrium dy-
namics of disordered classical spin chains [18,21]. A similar
method has also been introduced independently to study
the coarsening of the pure one-dimensional Φ4 model at
zero temperature [22]. In all these fields, these methods,
which are not “exact from first principles”, have however
been remarkably successful in reproducing the exact re-
sults that were already known (see Refs. [14,19]), and in
producing a lot of novel exact results for exponents and
scaling functions for a large variety of physical quanti-
ties. These results apply in the large renormalization scale
regime, corresponding respectively to low-temperature in
the field of disordered quantum spin chains, and to large
time behaviors in the other fields concerning dynamics.
These new predictions have moreover been confirmed nu-
merically whenever they have been tested [15,23,24].

For the random heteropolymer problem, the disorder-
dependent real space renormalization procedure that we
propose in this paper is defined to select the “important”
configurations for the thermodynamics of a chain with a
given realization of the disordered sequence in hydropho-
bic/hydrophilic components at a given temperature. We
expect this renormalization approach to become accurate
in the large renormalization scale regime, corresponding
here to the region of high temperatures. Since the local-
ized phase extends up to a critical temperature Tc that
goes to infinity as the dissymmetry parameter of the dis-
tribution in hydrophobic/hydrophilic components goes to
zero, our approach allows to study the localized phases of
symmetric chains and slightly dissymmetric chains.

The paper is organized as follows. In the remainder of
the introduction, we recall the model of Garel et al. [2]
in Section 1.1, and give a summary of the main results of
the present paper in Section 1.2. In Section 2, we recall
the physics of the heteropolymer problem at T = 0 and at
high temperatures, in order to motivate the introduction
of a disorder-dependent real-space renormalization proce-
dure in Section 3. The results of the renormalization ap-
proach are given for symmetric and dissymmetric chains
in Sections 4 and 5 respectively. In Section 6, we char-
acterize the finite-size properties of the problem by con-
sidering chains of finite (large) length. In Section 7, we
discuss how the renormalization procedure also describes
the non-equilibrium dynamics of a random chain at high
temperature starting at t = 0 from a zero-temperature

initial condition. Finally Section 8 contains the conclu-
sions. In the Appendix A, we compare some results of the
renormalization approach with the corresponding results
obtained by Garel and Orland via an extension of the usual
Imry-Ma argument [25].

1.1 Model and notations

We consider the model introduced by Garel et al. [2] with
some slightly different notations: a polymer chain consists
of L monomers indexed by i = 1, 2, . . . , L, where each
monomer i carries a quenched random charge qi. The {qi}
are independent identical random variables drawn with
some probability distribution C(q). An interface at z = 0
separates a solvent in the domain z > 0 favorable to pos-
itive charges q > 0, from a solvent in the domain z < 0
favorable to negative charges q < 0. More precisely, the
energy of a configuration C = {ri = (xi, yi, zi)} of the het-
eropolymer characterized by a realization {q1, q2, . . . qL}
reads

E(C) = −
L∑
i=1

qi sgn(zi), (1.1)

and the partition function reads

ZL(β; {qi}) = Trace{ri}
L−1∏
i=1

δ (|ri+1 − ri| − a)

× exp

(
β

L∑
i=1

qisgn(zi)

)
. (1.2)

In a continuum version of this model, the monomer index
i becomes a continuous variable s, and the (x, y) coordi-
nates play no role so that the partition function becomes a
path integral over one-dimensional Brownian trajectories
{z(s)} [2]

ZL(β; {q(s)}) =
∫
Dz(s)

× exp

(
− 1

2D

∫ L

0

ds
(

dz
ds

)2

+ β

∫ L

0

dsq(s)sgn(z(s))

)
.

(1.3)

In this paper, we propose a disorder-dependent real-space
renormalization procedure, that should give valid results
in the universal regime of large scales, where the details
of the microscopic charge distribution C(q) are not im-
portant, as long as the distribution C(q) satisfy the hy-
pothesis of the Central Limit Theorem. The important
parameters of C(q) will thus be the mean value and the
variance

q =
∫ +∞

−∞
dq q C(q) = q0 (1.4)

q2 − q2
0 =

∫ +∞

−∞
dq (q − q0)2 C(q) = 2σ. (1.5)
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To study the biased case q0 6= 0, we will always choose the
convention q0 > 0 and introduce the parameter δ defined
as the non-vanishing root of the equation [19]

e−2δq ≡
∫ +∞

−∞
dqe−2δqC(q) = 1. (1.6)

For instance, in the case of a Gaussian distribution con-
sidered in references [2,6–8]

C(q) =
1√
4πσ

e−
(q−q0)2

4σ , (1.7)

the parameter δ is simply the ratio between the mean
value q0 and the variance (2σ) [14]

δ =
q0
2σ
· (1.8)

For the case of binary distribution considered in refer-
ences [5,8,11,12] where the charge q takes a positive value
q+ with probability c and a negative value (−q−) with
probability (1− c) then

q0 = cq+ − (1− c)q−, (1.9)

σ =
c(1− c)

2
(q+ + q−)2, (1.10)

and δ is the solution of

ce−2δq+ + (1− c)e+2δq− = 1. (1.11)

For instance in the case q− = q+ = q1, we have

q0 = (2c− 1)q1 (1.12)

σ = 2c(1− c)q2
1 (1.13)

δ =
1

2q1
ln

c

1− c · (1.14)

An important property of the parameter δ is that it be-
comes universal and coincides with the Gaussian expres-
sion in the limit of small dissymmetry δ → 0 [14]

δ ' q0
2σ
· (1.15)

Concerning the spatial behavior of the polymer, the only
important parameter will be the diffusion coefficient D
characterizing the large distance behavior of the free chain

〈(z(s)− z(s′))2〉 ' D|s− s′|. (1.16)

We stress that in this paper, we do not take into account
excluded volume effects because they do not have any cru-
cial effect for the problem of the localization of the het-
eropolymer at the interface [2,5,8].

1.2 Quantities of interest and summary of main results

The quantities of interest to characterize the localized
phase of heteropolymers around the interface are on one

hand the free-energy f(T ) per monomer that governs the
thermodynamic, and on the other hand the statistical
properties of the spatial conformations of the chain. In
particular, the important characteristic lengths are the
typical lengths l±blob(T ) of blobs in the (±) solvents as
well as the typical distances z±blob(T ) between the chain
and the interface. At a more refined level, one may also
consider the probability distributions P±(l) of the lengths
of (±) blobs, the density ρ±(z) of polymer at a distance z
from the interface in the (±) solvents, and even correlation
functions as for instance the solvent-solvent correlation
〈sgn(z(s))sgn(z(s′))〉. Finally, we will also be interested in
the finite size effects of the problem.

Before introducing our approach and proceeding with
the calculations of these quantities of interest, we now
summarize the main results that will be derived from the
real-space renormalization approach in the remainder of
the paper.

1.2.1 Summary of main results for the symmetric case
(q0 = 0)

For the case of symmetric chains (q0 = 0), the renormal-
ization approach yields the following behaviors at high
temperature

f(T ) ∼ − σ

T lnT
, (1.17)

lblob(T ) ∼ T 2

σ
(lnT )2, (1.18)

z(T ) ∼ T√
σ

(ln T ), (1.19)

in agreement with the Imry-Ma argument results [2] (see
also Sect. 2.2 for the discussion of the presence of the
logarithmic correction). In addition, we obtain that the
rescaled length of blobs

λ =
σl

9T 2(lnT )2
(1.20)

is distributed with the law

P (λ) =
∞∑

n=−∞

(
n+

1
2

)
π(−1)ne−π

2λ(n+ 1
2)2

'
λ→∞

πe−
π2
4 λ

(1.21)

=
1√
πλ3/2

∞∑
m=−∞

(−1)m(m+
1
2

)e−
1
λ (m+ 1

2 )2

'
λ→0

1√
πλ3/2

e−
1

4λ . (1.22)

The polymer density takes the scaling form ρ(z)dz =
R(Z)dZ where the rescaled distance to the interface

Z =

√
2σ
D

z

3T (lnT )
(1.23)
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is distributed with the following law R(Z) that decays
exponentially at large distance

R(Z) = 4
∫ ∞

0

dλP (λ)
√
λ

∫ ∞
Z√
λ

due−u
2

'
Z→∞

8
π

√
2Ze−πZ .

(1.24)

Finally, to characterize the finite size effects, we will com-
pute the distribution of the delocalization temperature
Tdeloc over the ensemble of random cyclic finite chains of
(large) length L. The result is that the rescaled variable

g =
3√
σL

Tdeloc lnTdeloc (1.25)

is distributed with the law

D(g) =
π2

g3

+∞∑
n=1

(−1)n+1n2e−
n2π2

4g2 '
g→0

π2

g3
e−

π2

4g2 (1.26)

=
2√
π

+∞∑
m=−∞

[
2(2m+ 1)2g2 − 1

]
e−(2m+1)2g2

'
g→∞

4√
π
g2e−g

2
. (1.27)

1.2.2 Summary of main results for the dissymmetric case
(q0 > 0)

For the case of dissymmetric chains (q0 > 0), in the limit
σ � q0, the renormalization approach yields that the de-
localization transition takes place at the critical tempera-
ture

Tc =
4σ
3q0

, (1.28)

in agreement with the scaling obtained previously by other
methods [2,6–8]. In addition, we obtain that the transition
is of infinite order, with the following essential singularity
for the free energy the free-energy f(T )

f(T )− f(Tc) '
T→T−c

− 2q0

(
ln

4σ
q0

)
exp

− ln 4σ
q0(

1− T
Tc

)
 ·

(1.29)

For the statistical properties of the heteropolymer chain,
we find that the typical length l+blob(T ) of blobs in the
preferred solvent diverges with an essential singularity at
the transition, whereas the typical length l−blob(T ) in the
other solvent diverges algebraically

l+blob(T ) '
T→T−c

σ

q2
0

exp

+
ln 4σ

q0(
1− T

Tc

)
 (1.30)

l−blob(T ) '
T→T−c

σ

q2
0

ln 4σ
q0(

1− T
Tc

) · (1.31)

The rescaled length of blobs in the preferred solvent, de-
fined as

λ+ =
l+

σ
q20

exp
[

ln 4σ
q0

(1− T
Tc )

] (1.32)

is distributed with the exponential law e−λ+ near the tran-
sition. The polymer density ρ+(z) takes the scaling form
ρ+(z)dz = R+(Z)dZ where the rescaled distance to the
interface

Z =
z√

D
2
σ
q0

exp
[
+

ln 4σ
q0

2(1− T
Tc )

] (1.33)

is distributed with the following scaling distribution that
decays exponentially at large distance

R+(Z) = 4
∫ ∞

0

due−u
2
∫ ∞
Z
u

dvv2e−v
2

'
Z→∞

√
πZe−2Z .

(1.34)

Finally, to characterize the finite size effects, we will com-
pute the distribution of the delocalization temperature
Tdeloc over the ensemble of random cyclic finite chains of
(large) length L. The result is that the random variable

r =
σ

q2
0L

(
4σ
q2
0

) Tdeloc
Tc−Tdeloc

(1.35)

is distributed with the law

D+(r) =
1
r2

e−
1
r . (1.36)

In particular, the typical value for the delocalization tem-
perature presents a correction of order (1/ lnL) with re-
spect the critical temperature Tc

T typ
deloc ∼ Tc

(
1− 4σ

q2
0 lnL

)
. (1.37)

2 Physical picture at T = 0 and at high
temperatures

In this section, we recall the physics of the heteropolymer
problem at T = 0 and the Imry-Ma picture of reference [2]
valid at high temperature. They will be useful to motivate
the introduction of the real-space renormalization proce-
dure in the next section.

2.1 Description of ground states

At T = 0, for a given realization {q1, q2, . . . qL}, each
monomer i will be in its preferred solvent according to

sgn(zi) = sgn(qi). (2.1)
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The ground states have thus for energy

E0 = −
L∑
i=1

|qi|. (2.2)

The corresponding configurations of the chain are all the
random walks that cross the interface each time there is
a change of signs in the realization {q1, q2, . . . qL}. More
precisely, it is convenient to decompose the realization
{q1, q2, . . . qL} into groups (α) of consecutive charges of
the same sign, each group (α) containing a number lα =
1, 2, . . . of monomers, and carrying an absolute charge Qα
with

lα =
∑
i∈α

1 (2.3)

Qα = |
∑
i∈α

qi|. (2.4)

Then the ground states of the chain can be decomposed
into blobs α containing lα ∼ O(1) monomers. The chain is
thus localized around the interface with a typical distance
of order O(1).

2.2 Imry-Ma arguments at high temperature

In this section, we recall the Imry-Ma arguments [26] of
Garel et al. [2] , for the symmetric and dissymmetric cases
respectively. They are expected to be valid at high tem-
perature.

2.2.1 Imry-Ma argument for the symmetric case

The Imry-Ma argument exposed in [2] for the symmetric
case (q0 = 0) can be summarized as follows. Assuming
that the chain is localized around the interface with typ-
ical blobs of length l in each solvent, the typical energy
gain per blob scales as

√
σl, whereas the reduction of en-

tropy per blob scales as ln l (in [2], only powers of l were
considered for the symmetric case, and thus ln l was re-
placed by l0 ∼ 1, but since this ln l dependence plays a
crucial role in the dissymmetric case, we prefer to keep
this ln l dependence everywhere in this paper). Neglecting
prefactors of order 1, the optimization of the free-energy
per monomer

f(l) ∼ −
√
σ

l
+ T

ln l
l

(2.5)

with respect to l leads to

l

(ln l)2
∼ T 2

σ
· (2.6)

At high temperature, the scaling of the typical blob length
l(T ) and of the free-energy f(T ) are therefore given by:

l(T ) ∼ T 2(ln T )2

σ
, (2.7)

f(T ) ∼ − σ

T lnT
(2.8)

and thus the heteropolymer remains localized at any finite
temperature.

2.2.2 Imry-Ma argument for the dissymmetric case

The Imry-Ma argument exposed in [2] for the dissymmet-
ric case is actually much more subtle than in the sym-
metric case, because to describe correctly the blobs in the
(−) solvent, it is necessary to consider the “rare events”
where the sum of random variables qi of positive mean
qi = q0 > 0 happens to be negative enough in order to
make more favorable for the heteropolymer to make an
excursion in the (−) solvent rather than to stay in the
otherwise preferred (+) solvent. More precisely, the Imry-
Ma argument of reference [2] is as follows in our notations:
at high temperature, the heteropolymer is expected to be
mostly in the preferred (+) solvent, except when a blob
of length l− in the (−) solvent becomes energetically fa-
vorable, with a blob energy Q− = −

∑j+l−

i=j qi > 0 that is

“sufficient”. The probability to have
∑j+l−

i=j qi = −Q− is
given by the Gaussian

Prob(Q−) =
1√

4πσl−
e−

(Q−+q0l
−)2

4σl− . (2.9)

Thus the typical spacing l+ between two such events be-
haves as the inverse of this small probability

l+ ∼ e
(Q−+q0l

−)2

4σl− . (2.10)

As a consequence, in a configuration with blobs of order
(l+, l−) with l+ � l−, the energy gain Q− due to one
excursion in the (−) solvent behaves as

Q− ∼
√

4σl− ln l+ − q0l−, (2.11)

whereas the loss of entropy due to this excursion is of
order ln l+ + ln l− ' ln l+. The free-energy difference per
monomer between this localized state and the delocalized
state in the preferred solvent can then be estimated as
(neglecting prefactors of order 1):

f(T, l+, l−)− fdeloc(T ) ∼ 1
l+
(
−Q− + T ln l+

)
∼ 1
l+

(
q0l
− −
√

4σl− ln l+ + T ln l+
)
. (2.12)

The optimization with respect to l− leads to

l− ∼ σ

q2
0

ln l+ (2.13)

and

Q− ∼ σ

q0
ln l+. (2.14)

Thus both the energy gain Q− and the entropy cost have
the same ln l+ dependence! As a consequence, the free-
energy difference factorizes into

f(T, l+)− fdeloc(T ) ∼ (T − Tc)
ln l+
l+

, (2.15)
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where the parameter

Tc ∼
σ

q0
(2.16)

thus represents the critical temperature between the lo-
calized phase T < Tc and the delocalized phase T > Tc.
Contrary to the symmetric case, the behavior of the free-
energy with respect to the temperature remains unknown,
since the typical blob length l+ depends upon the temper-
ature T in a way that is not determined by the present ar-
gument. Still, the relations (2.13, 2.15) between the typical
blobs lengths l+ and l− and the free-energy f(T ) represent
non-trivial tests for any theory constructed to describe the
heteropolymer problem.

3 Definition of an effective thermodynamics

To go beyond the Imry-Ma arguments of previous section,
one needs to consider probability distributions of blob
lengths and blob energies. In Appendix A, we reproduce
an extension of the usual Imry-Ma argument which was in-
troduced by Garel and Orland [25], and which shows how
to get the asymptotic behavior of the probability distribu-
tion P (l) of the blob length l in the limit of small l. Here,
to study the probability distributions of blob lengths and
blob energies, we will construct via a real-space renormal-
ization procedure the “optimal” Imry-Ma domain struc-
ture associated with a given heteropolymer at a given
temperature. We will then argue that the configurations
corresponding to this optimal Imry-Ma domain structure
dominate in the partition function asymptotically at high
temperature.

3.1 Definition of a real-space renormalization
procedure to construct the optimal Imry-Ma
domain structure

At T = 0, we have seen in Section 2.1 that the chain
is decomposed into blobs α containing lα consecutive
monomers of charges of the same sign, and carrying an
absolute charge Qα. As T grows from T = 0, we consider
the configurations of the chain obtained from the ground
states structure by iteratively flipping the blobs of small-
est absolute charge Qmin ≡ Γ . When we flip the blob
(Q2 = Γ, l2) surrounded by the two neighboring blobs
(Q1, l1) and (Q3, l3), we obtain a new blob of absolute
charge Q and length l given by (see Fig. 1)

Q = Q1 +Q3 −Q2

l = l1 + l2 + l3. (3.1)

The renormalization procedure corresponding to the
rules (3.1) has already been extensively studied in the
context of the Random Transverse Field Ising Chain [14],
where the role of the absolute charges Qi was played by
the logarithm of the random couplings and random fields
(lnJi and lnhi), and in the context of Random walks in

0

z =0

z =

3

(Q  ,l  )(Q  ,l  )
1 1 3

(Q  ,l  )
2 2

Q = Q  + Q  - Q

l = l  + l  + l 
1

1 2

3

3 2

Fig. 1. Illustration of the real-space renormalization proce-
dure: the flipping of the blob (Q2 = Γ, l2) surrounded by the
two neighboring blobs (Q1, l1) and (Q3, l3) gives a new blob
(Q, l) with the rules (3.1).

disordered 1D environments [19] where the role of the ab-
solute charges Qi was played by the energy barriers Fi.
As explained in details in reference [19], the renormaliza-
tion procedure constructs iteratively the large scale ex-
trema statistics of random walks, where only barriers big-
ger than a given scale Γ are kept. Here the corresponding
random walk is simply given by the sum of the quenched
charges

∑i
0 qj as a function of the monomer index i, and

the renormalization procedure gives the “best” blob struc-
ture, given the constraint that only blobs of charges bigger
than a given scale Γ are kept.

To establish a relation between the renormalization
scale Γ and the temperature T , we now have to determine
the conditions under which the flip of the blob (Q2, l2) is
favorable. The cost in energy of the flip of the blob (Q2, l2)
is simply

∆Eflip = 2Q2, (3.2)

whereas the corresponding gain in entropy reads

∆Sflip = ln(M(l1 + l2 + l3))− ln[M(l1)M(l2)M(l3)],
(3.3)

where M(l) represents the number of 1D random walks
of l steps going from z = 0 to z = 0 in the presence of
an absorbing boundary at z = 0−. As a consequence, the
free-energy difference corresponding to this flip reads

∆F flip = ∆Eflip − T∆Sflip

= 2Q2 − T ln
(
M(l1 + l2 + l3)
M(l1)M(l2)M(l3)

)
. (3.4)

The optimal Imry-Ma domain structure corresponding to
a given realization of the disorder at a given temperature
is thus constructed as follows: we iteratively flip the blobs
of smallest absolute charge Q, starting from the ground-
states blob structure, and continue as long as these flip-
pings produce a decrease of the free-energy (∆F flip < 0).
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We stop the procedure when the next flipping would cor-
respond to a raise of free-energy (∆F flip > 0). We will de-
fine Γeq(T ) as the renormalization scale Γ where we have
to stop the renormalization. We now present a dynamical
interpretation of the renormalization procedure.

3.2 Dynamical interpretation of the renormalization
procedure

The renormalization procedure defined above to construct
the optimal blob structure at temperature T can be given
a perhaps more direct physical meaning if one considers
the dynamics at high temperature T for t > 0 starting
from a zero-temperature initial condition at t = 0, i.e.
after a quench to T = 0 for t < 0. Indeed, the time neces-
sary to flip a blob of absolute charge Q follows an Arrhe-
nius law t ∼ t0eβQ (where t0 is a microscopic time scale).
The dynamics thus corresponds to the iterative flipping
of the blobs of smallest absolute charge remaining in the
chain described by the renormalization procedure, where
the renormalization scale Γ now corresponds to time via

Γ = T ln
t

t0
(3.5)

as in references [18,19]. The dynamics takes place up to
time teq where equilibrium at temperature T is reached

T ln
teq

t0
= Γeq(T ). (3.6)

3.3 Discussion of the validity of the effective
thermodynamics

Let us define the effective partition function Zeff
L (β; {qi})

as the sum over all the configurations that correspond to
the disorder and temperature dependent optimal Imry-
Ma domain structure constructed via the renormaliza-
tion procedure defined above. The real partition function
ZL(β; {qi}) can be decomposed into

ZL(β; {qi}) = Zeff
L (β; {qi})

+ sum corresponding to other Imry-Ma domains structures.
(3.7)

The effective thermodynamics based on Zeff
L (β; {qi}) is of

course very approximate at low temperatures. However,
at high temperatures, the renormalization scale Γ = Qmin

will be large and the probability distributions of absolute
charges of the blobs will become infinitely broad [14]. More
precisely in the symmetric case, the difference between
the typical value Qtyp of the absolute charges and the
minimum value Qmin = Γ will also be large and of order
Γ : Qtyp−Qmin ∼ Γ . As a consequence, we expect that all
the configurations that do not correspond approximatively
to the optimal Imry-Ma domain structure will be highly
suppressed in the partition function, in comparison with
the “optimal configurations”. The validity of the effective

thermodynamics is thus based on the idea that, for a given
heteropolymer at a given high temperature, the large scale
Imry-Ma domain structure is essentially unique.

As explained in the introduction, in the other fields
where disordered-dependent real space renormalization
approaches have been used, they have been able to repro-
duce the non-trivial exact results obtained previously via
other methods (see Refs. [14,19]). These agreements with
the Mc Coy-Wu exact results in the field of disordered
quantum spin chains [14], and with the Kesten-Golosov
distribution in the field of 1D random walks in random
media [19] have provided the best evidence for the asymp-
totic exactness of the renormalization approach in these
fields, and give confidence in all its other novel predic-
tions. Here for the heteropolymer problem, we do not have
at our disposal so precise exact analytical results derived
via other methods to “test” unambiguously the asymp-
totic exactness of the predictions of the renormalization
approach. As a consequence, we hope that in the future,
the explicit results of the renormalization approach pre-
sented in this paper will be tested precisely by numerical
studies. It would be also very interesting to test more di-
rectly the idea of the dominance of the optimal Imry-Ma
domain structure in the partition function, by compar-
ing, sample by sample, the typical configurations of the
heteropolymer at equilibrium at temperature T with the
optimal blob structure obtained by the numerical imple-
mentation of the renormalization procedure up to scale
Γeq(T ).

The remainder of the paper is devoted to the detailed
study of the properties of the effective thermodynam-
ics. To proceed now with the concrete calculations of the
renormalization approach, it is again more convenient to
discuss separately the symmetric case q0 = 0 and the dis-
symmetric case q0 > 0.

4 Study of the symmetric case Q0 = 0

4.1 Properties of the renormalization procedure

It was shown in reference [14] that with the above renor-
malization procedure (3.1), the probability distribution
PΓ (Q, l) that a blob at renormalization scale Γ has ab-
solute charge Q and length l flows towards a fixed point
distribution P ∗(η, λ) in the rescaled variables

η =
Q− Γ
Γ

and λ =
σl

Γ 2
, (4.1)

with σ defined in (1.4), and that this fixed point distribu-
tion P ∗(η, λ) reads in Laplace transform with respect to
λ

Lλ→s (P ∗(η, λ)) ≡
∫ ∞

0

dλe−sλP ∗(η, λ)

=
√
s

sinh
√
s

e−η
√
s coth

√
s. (4.2)
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In particular, the distribution of the rescaled absolute
charge η is a simple exponential

P ∗(η) =
∫ ∞

0

dλP ∗(η, λ) = e−η, (4.3)

and the distribution of the rescaled length λ of a blob
reads

P (λ) =
∫ ∞

0

dηP ∗(η, λ) = L−1
s→λ

(
1

cosh(
√
s)

)
=
∫ +i∞

−i∞

ds
2iπ

esλ

cosh(
√
s)

=
∞∑

n=−∞

(
n+

1
2

)
π(−1)ne−π

2λ(n+ 1
2)2

=
1√
πλ3/2

∞∑
m=−∞

(−1)m(m+
1
2

)e−
1
λ (m+ 1

2 )2
. (4.4)

We also introduce the notation Pflip(λ) for the distribution
of the bonds which are about to be decimated (i.e. having
η = 0)

Pflip(λ) = L−1
s→λ

( √
s

sinh(
√
s)

)
= π2

∞∑
n=−∞

(−1)n−1n2e−π
2n2λ

=
1

2
√
πλ3/2

∞∑
m=−∞

[
2
λ

(m+
1
2

)2 − 1
]

e−
1
λ (m+ 1

2 )2
.

(4.5)

4.2 Relation between temperature and renormalization
scale

We now examine the condition ∆F flip < 0, where the
free-energy difference ∆F flip due to a blob flip was given
in equation (3.4). For large l, the number M(l) of 1D
random walks of l steps going from z = 0 to z = 0 in the
presence of an absorbing boundary at z = 0− behaves as

M(l) ' κ µl

l3/2
, (4.6)

where κ is a constant, and where lnµ characterizes the
entropy of the free random walk (for instance µ = 2 for
the 1D lattice). In the effective thermodynamics at large
renormalization scale Γ , the free-energy difference of a
blob flip then reads

∆F flip = 2Q2 − T ln
(

(l1l2l3)3/2

κ2(l1 + l2 + l3)3/2

)
. (4.7)

Using the rescaled variables λi = σli
Γ 2 , we obtain the aver-

age

∆F flip = 2Γ − 3T ln
Γ 2

σ
+ T (

3
2
K + lnκ2), (4.8)

whereK is a pure numerical constant that can be obtained
from the distributions (4.4, 4.5) as

K =
∫ ∞

0

dλ1P
∗(λ1)

∫ ∞
0

dλ2P
∗
flip(λ2)

×
∫ ∞

0

dλ3P
∗(λ3) ln(λ1 + λ2 + λ3)

− 2
∫ ∞

0

dλP ∗(λ) ln λ−
∫ ∞

0

dλP ∗flip(λ) ln λ. (4.9)

The scale Γeq(T ) where the renormalization procedure
has to be stopped is the solution of ∆F flip(Γ ) = 0 and
∂Γ∆F

flip(Γ ) > 0. For large Γ , and thus for large tem-
perature, we find that Γeq(T ) is implicitly defined as the
inverse of the function T (Γeq) given by

T (Γeq) ' Γeq

3 lnΓeq
· (4.10)

As a consequence, for any arbitrary large temperature
T , we find that the renormalization procedure has to be
stopped at the finite large renormalization scale Γeq(T ).
The polymer is thus always localized around the interface,
with blobs of typical length lblob(T ) behaving at high tem-
perature as

lblob(T ) ∼
Γ 2

eq

σ
∼ T 2(lnT )2

σ
· (4.11)

In this regime, the typical distance z(T ) to the interface
behaves as

z(T ) ∼
√
Dlblob(T ) ∼

√
D

σ
Γeq ∼

√
D

σ
T (lnT ). (4.12)

These scaling behaviors are in agreement with the Imry-
Ma argument of reference [2] (see Sect. 2.2, where the
logarithmic correction is found to be present in the Imry-
Ma argument) and with the exact free energy bounds of
reference [8]. The Replica variational approaches of ref-
erences [6,7] give the same scaling behaviors without the
logarithmic correction.

We now study more precisely various physical quanti-
ties for which the present renormalization approach yields
explicit predictions.

4.3 Thermodynamic quantities

The energy of a blob is simply given by minus its absolute
charge (−Q), and thus the energy per monomer e(T ) of
the chain in the thermodynamic limit can be obtained
through a decomposition into blobs indexed by α as

e(T ) = −
∑
αQα∑
α lα

= −
∫
Q,l

QPΓeq(T )(Q, l)∫
Q,l

lPΓeq(T )(Q, l)
(4.13)

with Γeq(T ) defined in (4.10). Using the fixed point solu-
tion of equations (4.1, 4.2), we obtain at large temperature

e(T ) ' − 4σ
Γeq(T )

∼ − 4σ
3T lnT

· (4.14)



C. Monthus: Localization of random heteropolymers at interfaces 119

The entropy associated with the z direction for a blob of
length l is given by ln(M(l)), where M(l) behaves as in
equation (4.6) in the large l regime. As a consequence, the
entropy per monomer s(T ) is given in the thermodynamic
limit by

s(T ) =
∑
α[lα lnµ+ lnκ− 3

2 ln lα]∑
α lα

=

∫
Q,l

[l lnµ+ lnκ− 3
2 ln l]PΓeq(T )(Q, l)∫

Q,l
lPΓeq(T )(Q, l)

· (4.15)

Using again the fixed point solution (4.1, 4.2), we have at
large temperature

s(T ) ' lnµ− 6σ ln(Γeq(T ))
Γ 2

eq(T )
+

σ

Γ 2
eq(T )

×
(

3 lnσ + 2 lnκ− 3
∫ ∞

0

dλP ∗(λ) ln λ
)

' lnµ− 2σ
3T 2 lnT

+O

(
1

T 2(ln T )2

)
. (4.16)

Finally, we obtain the free-energy per monomer f(T ) of
the chain at large temperature

f(T ) ' −T lnµ− 2σ
Γeq(T )

+
σ

Γeq(T ) lnΓeq(T )

×
(∫ ∞

0

dλP ∗(λ) ln λ− lnσ − 2
3

lnκ
)

' −T lnµ− 2σ
3T lnT

+O

(
1

T (lnT )2

)
. (4.17)

The dominant behavior depending on the disorder param-
eter σ is in agreement with the Imry-Ma argument of ref-
erence [2] as explained in Section 2.2.

4.4 Distribution of the blob lengths

In the renormalization approach, the lengths of the differ-
ent blobs are independent identical random variables, and
the rescaled blob length defined as

λ =
σlblob

Γ 2
eq(T )

(4.18)

is asymptotically distributed at high temperature with the
distribution P ∗(λ) given in equation (4.4). In particular,
its asymptotic behaviors for large and small λ are respec-
tively given by

P (λ) '
λ→∞

πe−
π2
4 λ (4.19)

P (λ) '
λ→0

1√
πλ3/2

e−
1

4λ . (4.20)

As noted by Garel and Orland [25], the small λ behavior
found in equation (4.20) for the distribution P (λ) can be
obtained via an extension of the usual Imry-Ma argument,
as explained in the Appendix A.

4.5 Density ρ(z) of polymer at a distance z from
the interface

We now study the density ρ(z) of polymer at a distance
z from the interface as follows. We first need to introduce
the probability SΓ (l, x) that a given point of the chain
belongs at renormalization scale Γ to a blob of length l
and is at distances (x, l− x) from the ends of the blob. It
reads

SΓ (l, x) =
PΓ (l)∫∞

0
dl l PΓ (l)

θ(x)θ(l − x), (4.21)

and is normalized to
∫∞

0
dl
∫ l

0
dxSΓ (l, x) = 1. We then

need the probability Bx,l(z) to be at height z at “time” x
for a Brownian motion of diffusion coefficient D starting
at z = 0 at x = 0 and finishing at z = 0 at x = l in the
presence of a reflexive boundary at z = 0

Bx,l(z) =
2√
π

(
l

2Dx(l − x)

)1/2

e−z
2 l

2Dx(l−x) . (4.22)

It is normalized to
∫∞

0 dzBx,l(z) = 1. The probability ρ(z)
that a given point of the polymer is at a distance z from
the interface (normalized to

∫∞
0

dzρ(z) = 1) can be now
expressed within the renormalization picture as

ρ(z) =
∫ ∞

0

dl
∫ l

0

dxSΓeq(T )(l, x)Bx,l(z)

=
1∫∞

0 dl l PΓ (l)

∫ ∞
0

dlPΓ (l) 4

√
l

2D

∫ ∞
2z√
2Dl

due−u
2
.

(4.23)

Introducing again the rescaled variable λ = σl
Γ 2 , we thus

obtain the scaling form

ρ(z)dz = R(Z)dZ, (4.24)

where the rescaled distance Z to the interface, defined as

Z =

√
2σ
D

z

Γeq(T )
, (4.25)

is distributed with the following scaling function

R(Z) = 4
∫ ∞

0

dλP ∗(λ)
√
λ

∫ ∞
Z√
λ

due−u
2

(4.26)

where P ∗(λ) is the fixed point distribution of equa-
tion (4.4). Deriving with respect to Z yields

R′(Z) = −4
∫ ∞

0

dλP ∗(λ)e−
Z2
λ

= −16Z
∞∑
n=0

(−1)nK1 [(2n+ 1)πZ] (4.27)

in terms of the Bessel function K1(y).
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In particular, the asymptotic behaviors at Z → 0 and
Z →∞ are given respectively by

R(Z) = R(0)− 4Z +O(Z2), (4.28)

R(0) = 2
√
π

∫ ∞
0

dλP ∗(λ)
√
λ =

8
π

∞∑
n=0

(−1)n

(2n+ 1)2
,

(4.29)

and

R(Z) '
Z→∞

8
π

√
2Ze−πZ . (4.30)

We may also compute the moments

∫ ∞
0

dZZkR(Z) = 2
Γ (1 + k

2 )
k + 1

∫ ∞
0

dλP ∗(λ)λ1+ k
2

= 4
Γ (1 + k

2 )Γ (2 + k
2 )

(k + 1)π3+k

∞∑
n=0

(−1)n

(n+ 1
2 )3+k

· (4.31)

In particular, the mean value of the square distance to the
interface is given at high temperature by

< z2 > ' Γ 2
eq(T )

D

2σ

∫ ∞
0

dZZ2R(Z) =
5D
36σ

Γ 2
eq(T )

' 5D
4σ

T 2(lnT )2. (4.32)

4.6 Density ρa,b(z, z′) for two thermal copies
of the same chain

To compare our approach with the Replica Gaussian Vari-
ational description of reference [7], we now compute the
probability ρa,b(z, z′) that a given monomer of a given
polymer chain is at distance z from the interface in a con-
figuration (a) and at a distance z′ from the interface in a
configuration (b) (note that in the effective thermodynam-
ics, we have sgn(z) = sgn(z′)). Using the same notations
as in the previous section, the joint distribution of z and
z′ can be obtained as

ρa,b(z, z′) =
∫ ∞

0

dl
∫ l

0

dxSΓeq(T )(l, x)Bx,l(z)Bx,l(z′)

=
1∫∞

0 dl l PΓ (l)

∫ ∞
0

dlPΓ (l)
4
πD

e−
z2+z′2
Dl2 K0

(
z2 + z′2

Dl2

)
.

(4.33)

Using again the rescaled variable λ = σl
Γ 2 , we obtain the

scaling form

ρa,b(z, z′)dzdz′ = Ra,b(Z,Z ′)dZdZ ′

with Z =

√
2σ
D

z

Γeq(T )
· (4.34)

The scaling function Ra,b(Z,Z ′) reads in terms of the fixed
point distribution P ∗(λ) of equation (4.4)

Ra,b(Z,Z ′) =
4
π

∫ ∞
0

dλP ∗(λ)e−
Z2+Z′2

2λ K0

(
Z2 + Z ′2

2λ

)
.

(4.35)

It is interesting to note that it is actually a function of the
single variable (Z2 + Z ′2).

The probability that a given monomer is at the same
z-coordinate in the two configurations (a) and (b) thus
behaves at high temperature as∫ ∞

0

dzρa,b(z, z) =

√
2σ
D

1
Γeq(T )

∫ ∞
0

dZRa,b(Z,Z)

∼
T→∞

1
T lnT

, (4.36)

as compared to the decay as (1/T ) found in reference [7]
for the Replica symmetric solution.

4.7 Solvent-solvent correlation function

〈sgn(z(s))sgn(z(s′))〉

Within the renormalization picture, the correlation func-
tion 〈sgn(z(s))sgn(z(s′))〉 of the solvents seen by two
monomers at distance (s − s′) along the polymer chain
turns out to correspond exactly to the spin correlation
function 〈S0(t)Sx(t)〉 of the random field Ising model in
the Glauber dynamics starting from a random initial con-
dition computed in references [18,21]. We thus only quote
the result

〈sgn(z(s))sgn(z(s′))〉 =

L−1

p→X=σ
|s−s′|
Γ2

[
1
p
− 4
p2

tanh2

(√
p

2

)]
=

∞∑
n=−∞

48(2n+ 1)2π2 + 32σ |s−s
′|

Γ 2

(2n+ 1)4π4
e−(2n+1)2π2σ |s−s

′|
Γ2 ,

(4.37)

where Γ = Γeq(T ). In particular, the correlation length
ξ(T ) associated with this correlation function is given by
the decay of the dominant exponential at large separation
|s− s′|

ξ(T ) =
Γ 2

eq(T )
π2σ

' 9T 2(lnT )2

π2σ
· (4.38)

5 Study the biased case Q0 > 0

5.1 Properties of the renormalization procedure

In the biased case, it is necessary to introduce two prob-
ability distributions P+

Γ (Q, l) and P−Γ (Q, l) representing
the probabilities for a blob at scale Γ in the (±) solvent to
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have absolute charge Q and length l. It was shown in ref-
erence [14] that with the renormalization procedure (3.1),
these probability distributions flow at large Γ towards

P±Γ (Q, l) = L−1
p→l

(
U±Γ (p)e−(Q−Γ )u±Γ (p)

)
u±Γ (p) = ∆(p) coth [Γ∆(p)]∓ δ

U±Γ (p) =
∆(p)

sinh [Γ∆(p)]
e∓δΓ

∆(p) =
√
δ2 +

p

σ
, (5.1)

where σ and δ have been defined in equations (1.4, 1.6)
in terms of the initial charge distribution C(q). The solu-
tions (5.1) are valid in the scaling regime of large Γ , small
δ and small p with δΓ fixed and pΓ 2 fixed [14].

In particular, the distributions of the absolute charge
Q ≥ Γ are simple exponentials:

P+
Γ (Q) = u+

Γ e−(Q−Γ )u+
Γ with u+

Γ =
2δ

e2Γδ − 1
, (5.2)

P−Γ (Q) = u−Γ e−(Q−Γ )u−Γ with u−Γ =
2δ

1− e−2Γδ
, (5.3)

whereas the distributions of the length of blobs have the
form of an infinite series of exponentials [19]

P±Γ (l) = L−1
p→l

(
∆(p)e∓δΓ

∆(p) cosh [Γ∆(p)]∓ δ sinh [Γ∆(p)]

)
=

σ

Γ 2

∞∑
n=0

J±n (γ = δΓ )e−
σl
Γ2 s

±
n (γ=δΓ ), (5.4)

where the functions s±n (γ) and J±n (γ) are defined in terms
of the roots α±n (γ) (n = 0, 1, ...) of the equation

α±n (γ)cotan(α±n (γ)) = ±γ with nπ < α±n (γ) < (n+ 1)π.
(5.5)

For γ > 1, the root α+
0 (γ) does not exist, but is

replaced by the positive root α̃+
0 (γ) of the equation

α̃+
0 (γ) coth(α̃+

0 (γ)) = γ. In terms of these roots, we have

s±n (γ) = γ2 + (α±n (γ))2, (5.6)

J±n (γ) =
2(−1)n(α±n (γ))2

√
γ2 + (α±n (γ))2e∓γ

γ2 + (α±n (γ))2 ∓ γ
, (5.7)

except for the (+) n = 0 term in the domain γ > 1
for which

s+
0 (γ > 1) = γ2 − (α̃+

0 (γ))2 (5.8)

J+
0 (γ > 1) =

2(α̃+
0 (γ))2

√
γ2 − (α̃+

0 (γ))2e−γ

γ + (α̃+
0 (γ))2 − γ2

· (5.9)

The mean lengths of the blobs in the domains (±) have
simple expressions

l+Γ =
1

4δ2σ
(e2δΓ − 2δΓ − 1), (5.10)

l−Γ =
1

4δ2σ
(2δΓ − 1 + e−2δΓ ), (5.11)

but the mean values of ln l± are unfortunately much more
complicated:

ln l± =
∫ ∞

0

dl(ln l)P±Γ (l)

=
∞∑
n=0

J±n (γ)
s±n (γ)

ln
(

1
s±n (γ)

)
+ ln

(
Γ 2

σ

)
− CEuler,

(5.12)

where CEuler is the Euler constant.

5.2 Relation between temperature and renormalization
scale

Using again equation (4.6), the averaged free-energy differ-
ence corresponding to the flip of a blob out of the domain
(±) reads

∆F flip(±) = 2Γ − T ln
(

(l∓1 l
±
2 l
∓
3 )3/2

(l∓1 + l±2 + l∓3 )3/2κ2

)
, (5.13)

which yields to a quite complicated expression for arbi-
trary γ = δΓ .

In the following, we consider the case of large γ � 1,
where the distribution P+

Γ is dominated by the n = 0
term [19]

P+
Γ (l) ' a+(γ)e−a

+(γ)l with a+(γ) ' 4δ2σe−2γ ,
(5.14)

leading to

ln l+ ' ln
1

a+(γ)
− CEuler = 2γ + ln

1
4δ2σ

− CEuler.

(5.15)

In this regime, the probabilities to have blobs with abso-
lute charge Q = Γ in the (±) domain read respectively
(5.2)

P+(Q = Γ ) = u+
Γ ' 2δe−2Γδ, (5.16)

P−(Q = Γ ) = u−Γ ' 2δ, (5.17)

and thus the renormalization consists asymptotically in
flipping only blobs out of the (−) domain. We thus now
concentrate on the free-energy difference corresponding to
the flip of a (−) blob, which can be estimated as follows

∆F flip(−) = 2Q2 − T ln
(

(l+1 l
−
2 l

+
3 )3/2

(l+1 + l−2 + l+3 )3/2κ2

)
' 2Γ − 3

2
T
[
2ln(l+1 )− ln(l+1 + l+3 )

]
' 2Γ − 3

2
T

[
2δΓ + ln

1
4δ2σ

− CEuler − 1
]
,

(5.18)
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so that finally, in the regime δ → 0, Γ →∞, with δΓ � 1
fixed, and large temperatures, we have

∆F flip(−) ' Γ (2− 3δT )− 3
2
T ln

1
δ2σ
· (5.19)

Since the renormalization procedure has to be performed
as long as ∆F flip(−) < 0, we obtain a transition at the
temperature

Tc =
2
3δ
, (5.20)

where δ is the parameter characterizing the distribution of
quenched charges (1.6). For T < Tc, the renormalization
procedure has to be stopped at scale Γeq(T ) given by

Γeq(T ) =
3T ln 1

δ2σ

2(2− 3δT )
=

3T ln 1
δ2σ

4(1− T
Tc

)
· (5.21)

At the temperature T = Tc, the renormalization scale
Γeq(T ) diverges: this corresponds to the delocalization
transition found previously in references [2,5–8,11].

5.3 Comparison with previous results for the critical
temperature

5.3.1 Case of Gaussian distribution for the quenched
charges

For the case where the initial distribution of charges is
Gaussian (1.7), we get

Tc =
2
3δ

=
4σ
3q0

, (5.22)

in agreement with the scaling obtained previously [2,6,7]
and with the bounds established in reference [8], which
read in terms of our notations

2σ√
π ln 2

< Tc <
2σ
q0
· (5.23)

We note moreover that the value of the transition tem-
perature obtained here coincides with the critical temper-
ature obtained by Stepanow et al. [6] and is lower than the
critical temperature obtained by Trovato et al. [7], since
their results read respectively in our notations:

T Stepanow et al.
c =

4σ
3q0

, (5.24)

TTrovato et al.
c =

2σ
q0
· (5.25)

5.3.2 Case of binary distribution for the quenched charges

For the case where the initial distribution of charges is a
binary distribution, we obtain that Tc is the solution of
the equation (1.11)

ce−
4

3Tc
q+ + (1− c)e+ 4

3Tc
q− = 1. (5.26)

In particular for the case q− = q+ = q1 (1.12), we obtain

Tc =
4q1

3 ln
(

c
1−c

) , (5.27)

which is consistent with the bounds given in reference [8]
reading in our notations:

Tc <
4q1

ln
(

c
1−c

) · (5.28)

We may also compare with the bounds obtained in refer-
ence [11] concerning the binary case with c = 1

2 , q+ = 1+h
and q− = 1− h where 0 < h < 1 for which we have:

q0 = h, 2σ = 1, e−2δh cosh δ = 1. (5.29)

Our renormalization approach yields thus for this case
the following behavior for the critical line hc(T ) at
high temperature

hc(T ) =
(

1
2δ

ln cosh δ
) ∣∣∣

δ= 2
3T

=
3Tc

4
ln cosh

(
2

3Tc

)
=

1
6T
− 1

81T 3
+O(

1
T 5

), (5.30)

which satisfies the bounds established in reference [11]

0 < lim
T→∞

(Thc(T )) ≤ 1. (5.31)

5.4 Thermodynamic quantities

Following the computations done for the symmetric case in
Section 4.3, we obtain that the energy per monomer e(T )
of the chain in the thermodynamic limit can be obtained
as

e(T ) = −
∫
Q,l

Q[P+
Γeq(T )(Q, l) + P−Γeq(T )(Q, l)]∫

Q,l l[P
+
Γeq(T )(Q, l) + P−Γeq(T )(Q, l)]

, (5.32)

with Γeq(T ) defined in equation (5.21).
Using the fixed point solution of equations (5.1), we

have at large temperature

e(T ) ' −2δσ coth[δΓeq(T )]− 2δ2σΓeq(T )
sinh2[δΓeq(T )]

' −2δσ − 8σδ2Γeq(T )e−2δΓeq(T ) + . . . (5.33)

Since in the limit of small dissymmetry δ → 0, we have the
relation (1.15), the energy per monomer at the transition
Tc is simply

e(Tc) = −q0, (5.34)

and coincides of course with the energy per monomer when
the heteropolymer is delocalized in the solvent (+) for
T > Tc. Surprisingly however, we find that the critical
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behavior near Tc is governed by the following essential
singularity:

e(T )− e(Tc) ' −8σδ2Γeq(T )e−2δΓeq(T )

'
T→T−c

− 2q0
ln 4σ

q0

(1− T
Tc

)
exp

[
−

ln 4σ
q0

(1− T
Tc

)

]
.

(5.35)

The entropy per monomer s(T ) is given in the thermody-
namic limit by the generalization of equation (4.15)

s(T )

=

∫
Q,l

[l lnµ+ lnκ− 3
2 ln l][P+

Γeq(T )(Q, l) + P−Γeq(T )(Q, l)]∫
Q,l l[P

+
Γeq(T )(Q, l) + P−Γeq(T )(Q, l)]

= lnµ− 3
2

ln l+ + ln l−

l+ + l−
− 2

lnκ
l+ + l−

, (5.36)

where the averages have to be computed with the prob-
ability distributions P±Γ (Q, l) given in equations (5.1).
Considering as before the regime δ → 0, Γ → ∞, with
γ = δΓ � 1 fixed where we can use equation (5.14), we
get

s(T ) ' lnµ− 12σδ3Γeq(T )e−2δΓeq(T ) + . . .

'
T→T−c

lnµ− 3q2
0

2σ

ln 4σ
q0

(1− T
Tc

)
exp

[
−

ln 4σ
q0

(1− T
Tc

)

]
. (5.37)

We finally give the expression of the free-energy per
monomer

f(T ) ' f(Tc)− 8σδ2Γeq(T )e−2δΓeq(T )

+ 12σδ3TΓeq(T )e−2δΓeq(T )...

'
T→T−c

f(Tc)− 2q0

(
ln

4σ
q0

)
exp

− ln 4σ
q0(

1− T
Tc

)
 (5.38)

which again presents an essential singularity near Tc: the
delocalization transition is thus found to be of infinite or-
der.

The well-known pure models presenting infinite order
transitions are the two-dimensional XY model [27] and the
1D Ising or Potts model with inverse square long range
interactions [28,29]. The important property of these sys-
tems is that the interaction between two defects (two vor-
tices in the XY model or two kinks in the spin chain)
is logarithmic at larges distances. The usual estimation
of the free-energy for a pair of defects, where both the
energy and the entropy behave as the logarithm of the
size L of the system, leads to a factorization of lnL as in
the Imry-Ma argument leading to equation (2.15) for the
heteropolymer problem. It would be interesting to discuss
in more details the similarities/differences between these
systems, but this goes beyond the scope of the present
paper.

5.5 Statistical properties of blobs

In the localized phase T < Tc, we find that the blobs in
the domain z > 0 and z < 0 have respectively the typical
lengths (5.10)

l+blob(T ) ' l+Γeq(T ) '
1

4δ2σ
(e2δΓeq(T ) − 2δΓeq(T )− 1)

(5.39)

l−blob(T ) ' l−Γeq(T ) '
1

4δ2σ
(2δΓeq(T )− 1 + e−2δΓeq(T )).

(5.40)

As T approaches T−c , l+blob(T ) thus diverges with an es-
sential singularity as

l+blob(T ) '
T→T−c

1
4δ2σ

(
1
δ2σ

) 1
(1− T

Tc
)

=
σ

q2
0

exp

+
ln 4σ

q0(
1− T

Tc

)
 , (5.41)

whereas l−blob(T ) also diverges but only algebraically as

l−blob(T ) '
T→T−c

ln 1
δ2σ

4δ2σ

1
(1− T

Tc
)

=
σ

q2
0

ln 4σ
q0(

1− T
Tc

) · (5.42)

We note that these behaviors are compatible with the re-
lation (2.13) between the typical lengths l−blob and l+blob
obtained in reference [2] via an Imry-Ma argument, since
we have obtained

l−blob '
σ

q2
0

ln l+blob. (5.43)

Our results (5.38, 5.41) also satisfy the relation (2.15) be-
tween the free-energy and the typical blob length l+blob in
the preferred solvent obtained again in reference [2] via an
Imry-Ma argument, since we have

f(T )− f(Tc) ' −
3
2

(Tc − T )
ln l+blob

l+blob

· (5.44)

As a direct consequence of equations (5.41, 5.42), we ob-
tain that the typical distances z±(T ) to the interface in
the domain z > 0 and z < 0 diverge respectively as
T → T−c as

z+(T ) ∼
√
Dl+blob(T ) '

T→T−c
=
√
Dσ

q0
exp

 ln 4σ
q0

2
(

1− T
Tc

)


(5.45)

z−(T ) ∼
√
Dl−blob(T ) '

T→T−c
=

√
Dσ

q0

 ln 4σ
q0(

1− T
Tc

)
1/2

.

(5.46)
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As in the symmetric case, the lengths l± of the blobs
are independent random variables distributed respectively
with the probability distributions P±Γeq(T )(l). In particular,
near Tc, the rescaled variable

λ+ = 4δ2σ
l

e2δΓeq(T ) '
T→T−c

l+

σ
q20

exp
[

ln 4σ
q0

(1− T
Tc )

] (5.47)

is distributed with a simple exponential law e−λ+ (see
Eq. (5.14)).

5.6 Density profiles ρ±(z)

Following the calculations done previously in the sym-
metric case, we obtain that the probabilities ρ±(z) that
a given point of the polymer is at a distance z from
the interface in the (±) domain (with the normalization∫∞

0
dz(ρ+(z) + ρ−(z)) = 1) reads

ρ±(z) =
1∫∞

0
dl l (P+

Γ (l) + P−Γ (l))

×
∫ ∞

0

dlP±Γ (l) 4

√
l

2D

∫ ∞
2z√
2Dl

due−u
2
. (5.48)

In the regime δΓ � 1 studied above where P+
Γ (l) has

the asymptotic simple form of equation (5.14), we get the
following scaling form

ρ+(z)dz = R+(Z)dZ, (5.49)

where the rescaled distance Z to the interface and the
scaling function R(Z) read

Z =
4δz√

2DeδΓeq(T )
'

T→T−c

z√
D
2
σ
q0

exp
[
+

ln 4σ
q0

2(1− T
Tc )

] , (5.50)

and

R+(Z) = 4
∫ ∞

0

due−u
2
∫ ∞
Z
u

dvv2e−v
2
. (5.51)

Deriving with respect to Z yields

dR+(Z)
dZ

= −4Z2

∫ ∞
0

due−u
2−Z2

u2
1
u3

= −4ZK1(2Z).

(5.52)

In particular, the asymptotic behaviors at Z → 0 and
Z →∞ are given respectively by

R+(Z) =
π

2
− 2Z +O(Z2) (5.53)

and

R+(Z) '
Z→∞

√
πZe−2Z . (5.54)

5.7 Correlation function 〈sgn(z(s))sgn(z(s′))〉

Within the renormalization picture, the correlation func-
tion 〈sgn(z(s))sgn(z(s′))〉 of the solvents seen by two
monomers at distance (s − s′) along the polymer
chain containing a dissymmetric distribution in hy-
drophilic/hydrophobic components corresponds exactly to
the spin correlation function 〈S0(t)Sx(t)〉 of the random
field Ising model in the Glauber dynamics starting from
a random initial condition in the presence of an exter-
nal field, which is computed in reference [21]. Here we do
not give the full result, but only the correlation length
ξ(T ) which, not surprisingly, is simply given in the regime
δΓ � 1 that we consider by the typical behavior of
l+blob(T ) obtained in equation (5.39)

ξ(T ) ' l+blob(T ) '
T→T−c

σ

q2
0

exp

+
ln 4σ

q0(
1− T

Tc

)
 . (5.55)

6 Finite size properties

Up to now we have always considered the thermody-
namic limit of heteropolymers of infinite length L →
∞. In this section, we study the finite-size properties
of the localization at the interface for the case of peri-
odic boundary conditions, i.e. we consider cyclic chains
(q1, q2, . . . qL, qL+1 = q1) of finite (but large) size L, with
positions (z1, . . . , zL+1 = z1). We can apply the renormal-
ization procedure as before, but the procedure will now
stop at some finite renormalization scale Γdeloc. where the
chain delocalizes from the interface. This renormalization
scale depends upon the realization of the quenched charges
and corresponds to some temperature Tdeloc via the rela-
tion

Γdeloc = Γeq(Tdeloc) (6.1)

given in equations ((4.10), (5.21)) respectively for the sym-
metric case and the biased case. In the following, we char-
acterize the distribution of Tdeloc for the ensemble of finite
chains of size L, and the probability distribution of the
number of blobs for the chains of length L that are still
localized at a given temperature.

6.1 Probability measure for the blobs of a cyclic chain
of length L

As shown in references [15,19], it is possible to fol-
low the renormalization procedure for finite size sys-
tems. Here we deal with periodic boundary conditions,
and to avoid problems with the translation invariance
along the chain, it is convenient to mark a point of the
chain, called “the origin” in the following, and to give
an orientation to the chain. For k = 1, 2 . . . , we define
N2k,±
Γ,L (Q1, l1;Q2, l2; . . .Q2k, l2k) as the probability that in

the chain of length L at renormalization scale Γ , the ori-
gin belongs to a blob (Q1, l1) in the domain (±), and
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∂ΓN
2k,±
Γ,L (Q1, l1;Q2, l2; . . . Q2k, l2k) =

2k∑
i=2

∫
Q+Q′′−Γ=Qi,l+l′+l′′=li

N2k+2,±
Γ,L (Q1, l1; . . . ;Qi−1, li−1;Q, l;Γ, l′;Q′′, l′′;Qi+1, li+1 . . . ;Q2k, l2k)

×
∫
Q+Q′′−Γ=Q1,l+l′+l′′=l1

N2k+2,±
Γ,L (Q, l;Γ, l′;Q′′, l′′;Q2, l2 . . . ;Q2k, l2k)

+
∫
Q+Q′′−Γ=Q1,l+l′+l′′=l1

N2k+2,±
Γ,L (Q′′, l′′;Q2, l2; . . . ;Q−2k, l

−
2k;Q, l;Γ, l′)

+
∫
Q+Q′′−Γ=Q1,l+l′+l′′=l1

N2k+2,∓
Γ,L (Γ, l′;Q′′, l′′;Q2, l2; . . . ;Q−2k, l

−
2k;Q, l), (6.3)

that there are exactly (2k − 1) other blobs in the chain
of absolute charges and lengths given by the sequence
(Q2, l2; . . . Q2k, l2k). We also need to introduce the prob-
ability N1,±

Γ,L (Q) that the chain at scale Γ is already de-
localized in the (±) solvent with absolute charge Q. The
normalization of these probabilities read

∞∑
k=1

∫
Qi≥Γ,li

N2k+
Γ,L (Q1, l1;Q2, l2; . . .Q2k, l2k)

+
∞∑
k=1

∫
Qi≥Γ,li

N2k−
Γ,L (Q1, l1;Q2, l2; . . . Q2k, l2k)

+
∫ ∞

0

dQN1+
Γ,L(Q) +

∫ ∞
0

dQN1−
Γ,L(Q) = 1. (6.2)

Note that in the last two terms, the absolute charge Q
is a random variable of the domain [0,+∞[, contrary to
the other terms where by definition of the renormalization
rule we have Qi ≥ Γ .

The renormalization equations for these probabilities
read for k = 1, 2, . . .

see equation (6.3) above

and

∂ΓN
1,±
Γ,L (Q) =

∫
l1,l2

N2,±
Γ,L (Q+ Γ, l1;Γ, l2)

+
∫
l1,l2

N2,∓
Γ,L (Γ, l1;Q+ Γ, l2). (6.4)

As already obtained in references [15,19] for the case
of fixed boundary conditions, the above renormalization
equations concerning periodic boundary conditions are
solved by a quasi-factorized form for k = 1, 2, . . .

N2k,±
Γ,L (Q1, l1;Q2, l2; . . . Q2k, l2k) = l1P

±
Γ (Q1, l1)

×P∓Γ (Q2, l2) . . . P±Γ (Q2k−1, l2k−1)P∓Γ (Q2k, l2k)δ

 
L−

2kX
i=1

li

!
,

(6.5)

where P±Γ (Q, l) are the bulk distributions given in equa-
tion (5.1), satisfying

∂ΓP
±
Γ (Q, l) =Z
Q1+Q3−Γ=Q,l1+l2+l3=l

P∓Γ (Γ, l2)P±Γ (Q1, l1)P±Γ (Q3, l3)

+ P±Γ (Q, l)

Z ∞
0

dl′
�
P±Γ (Γ, l′)− P∓Γ (Γ, l′)

�
. (6.6)

Note that in the measure (6.5), the first bond plays a
special role as it is defined as the bond containing the
origin.

The equation (6.4) now reads

∂ΓN
1,±
Γ,L (Q) =

Z
l1,l2

l1P
±
Γ (Q+ Γ, l1)P∓Γ (Γ, l2)δ (L− (l1 + l2))

+

Z
l1,l2

l1P
∓
Γ (Γ, l1)P±Γ (Q+ Γ, l2)δ (L− (l1 + l2))

= LP±Γ (Q+ Γ, .) ∗L P∓Γ (Γ, .). (6.7)

Using now the explicit expressions (5.1), we get in Laplace
transform with respect to L∫ ∞

0

dLe−pL
(
∂ΓN

1,±
Γ,L(Q)

)
=

− ∂p
(

∆2(p)
sinh2[Γ∆(p)]

e−Q(∆(p) coth [Γ∆(p)]∓δ)
)

(6.8)

where ∆(p) =
√
δ2 + p

σ .

6.2 Probability for a chain to be delocalized
at renormalization scale Γ

The equations (6.7) for the probabilities N1,±
Γ,L(Q) that a

chain of length L is already delocalized at scale Γ with an
absolute charge Q in the domain (±) can be integrated
with respect to Γ to yieldZ ∞

0

dLe−pLN1,±
Γ,L (Q) =

1

2σ

�
coth[Γ∆(p)]

∆(p)
− Γ

sinh2[Γ∆(p)]

�
e−Q(∆(p) coth[Γ∆(p)]∓δ).

(6.9)
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N1,±
Γ,L =

∫ ∞
0

dQN1,±
Γ,L(Q) = L−1

p→L

[
1

2σ(∆(p) cosh [Γ∆(p)]∓ δ sinh [Γ∆(p)])

(
cosh[Γ∆(p)]

∆(p)
− Γ

sinh[Γ∆(p)]

)]
. (6.11)

We may check that N1,±
Γ,L (Q) vanishes as it should for

Γ → 0. In the limit Γ → ∞, the chain is expected to
be always delocalized, with a charge corresponding to the
sum

∑L
i=1 qi of L independent identical random variables.

Indeed, using (1.15), we find

N1,±
Γ→∞,L(Q) = L−1

p→L

[
e−Q(

√
δ2+ p

σ∓δ)

2s
√
δ2 + p

σ

]
=

1
2
√

2σL
e−

(Q∓Lq0)2

4σL , (6.10)

as expected from the Central Limit Theorem.
For arbitrary Γ , we can obtain the total probabilities

N1,±
Γ,L that the chain is already delocalized at scale Γ in

the domain (±) as

see equation (6.11) above.

In particular for the symmetric case δ = 0, we have

N1,±
Γ,L =

1
2
N
(
λ ≡ σL

Γ 2

)
. (6.12)

The scaling function N (λ) represents the total probability
for a symmetric chain of length L to be delocalized at
temperature T corresponding to the renormalization scale
Γ = Γeq(T ) defined in equation (4.10). It reads

N (λ) = L−1
s→λ

(
1
s
− 2√

s sinh(2
√
s)

)
= 1−

+∞∑
n=−∞

(−1)ne−λn
2 π2

4

= 1− 2√
πλ

+∞∑
m=−∞

e−
(2m+1)2

λ . (6.13)

6.2.1 Distribution of the delocalization temperature
for symmetric finite chains

The probability that the polymer chain delocalizes from
the interface between Γ and Γ+dΓ is given by (∂Γ [N (λ)]).
To characterize the distribution of the delocalization tem-
perature Tdeloc for the ensemble of the symmetric finite
chains of length L, it is thus convenient to define the
rescaled variable

g =
Γeq(Tdeloc)√

σL
, (6.14)

where the function Γeq(T ) has been defined in equa-
tion (4.10). The final result is that g is distributed with
the law:

D(g) = − 2
g3
N ′
(

1
g2

)
=
π2

g3

+∞∑
n=1

(−1)n+1n2e−
n2π2

4g2

(6.15)

=
2√
π

+∞∑
m=−∞

[
2(2m+ 1)2g2 − 1

]
e−(2m+1)2g2

.

(6.16)

6.2.2 Distribution of the delocalization temperature
for dissymmetric finite chains

In the biased case, the probability that a chain of length
L delocalizes from the interface between Γ and Γ + dΓ in
the domain (±) is given by

∂ΓN
1,±
Γ,L = L−1

p→L

×
�
−∂p

�
∆2(p)

sinh[Γ∆(p)](∆(p) cosh [Γ∆(p)]∓ δ sinh[Γ∆(p)])

��
.

(6.17)

In the regime γ = δΓ � 1 considered before (see
Eq. (5.14)), the inverse Laplace transform is dominated
by a single pole contribution

∂ΓN
1,+
Γ,L ' 2δa+(γ)Le−La

+(γ), (6.18)

where a+(γ) = 4σδ2 exp(−2γ) has been introduced
in (5.14). We now use the correspondence between
temperature and renormalization scale given by Γ =
Γeq(T ) (5.21). To characterize the distribution of the delo-
calization temperature Tdeloc for the ensemble of dissym-
metric finite chains of large length L, it is thus convenient
to define the random variable

r =
1

4δ2σL

(
1
δ2σ

) Tdeloc
Tc−Tdeloc

. (6.19)

The final result is that r is distributed with the law

D+(r) =
1
r2

e−
1
r . (6.20)

In particular, the typical value for the delocalization
temperature corresponds to r ∼ 1 and thus presents
a correction in 1/(lnL) with respect to the critical
temperature Tc

T typ
deloc ∼ Tc

(
1−

1
δ2σ

lnL

)
. (6.21)
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〈(2k)2〉L,Γ ≡
∞X
k=0

4k2B2k
L (Γ ) = L−1

p→L

�
4
�
−∂p

�
P+
Γ (p)P−Γ (p)

�� 1 + P+
Γ (p)P−Γ (p)

(1− P+
Γ (p)P−Γ (p))3

�

= L−1
p→L

�
4

(2δ2σ + p(cosh2[Γ∆(p)] + 1))(δ2σ + pΓ∆(p) coth[Γ∆(p)])

p3 sinh4[Γ∆(p)]

�

=
4σ2L2δ4

sinh4(δΓ )
+

2σLδ2

sinh4(δΓ )
(cosh(2δΓ )− 4δΓ coth(δΓ ) + 3) +

∞X
n=1

e
−σL(δ2+n2π2

Γ2 )
(. . . ). (6.25)

6.3 Distribution of the number of blobs at scale Γ

The probability that a chain is still localized around the
interface at scale Γ and is in a state with (2k) blobs read
for k = 1, 2, . . .

B2k
L (Γ ) =

∫
Qi,li

N2k,+
Γ,L (Q1, l1;Q2, l2; . . .Q2k, l2k)

+
∫
Qi,li

N2k,−
Γ,L (Q1, l1;Q2, l2; . . .Q2k, l2k). (6.22)

The Laplace transform of the generating function of the
probabilities B2k

L (Γ ) reads

Z ∞
0

dLe−pL
 ∞X
k=1

zkB2k
L (Γ )

!
=

�
−∂p

�
P+
Γ (p)P−Γ (p)

�� z

1− zP+
Γ (p)P−Γ (p)

=

z sinh[Γ∆(p)](δ2σ sinh[Γ∆(p)] + pΓ∆(p) cosh[Γ∆(p)])

(δ2σ(1− z) + p(cosh2[Γ∆(p)]− z))(δ2σ + p cosh2[Γ∆(p)])
·

(6.23)

In particular, the average number of blobs reads

〈2k〉L,Γ ≡
∞∑
k=1

2kB2k
L (Γ )

= L−1
p→L

(
2
[
−∂p

(
P+
Γ (p)P−Γ (p)

)] 1
(1− P+

Γ (p)P−Γ (p))2

)
= L−1

p→L

(
2
δ2σ + pΓ∆(p) coth[Γ∆(p)]

p2 sinh2[Γ∆(p)]

)
=

2σLδ2

sinh2(δΓ )
+
∞∑
n=1

e−σL(δ2+n2π2

Γ2 )4
σLn2π2

Γ 2(n2π2 + δ2Γ 2)

×
(

1 +
2δ2Γ 2

n2π2 + δ2Γ 2
− 2

σLn2π2

Γ 2

)
. (6.24)

The first term is proportional to L and corresponds of
course to the ratio 2L

l+Γ+l−Γ
that could have been antici-

pated from the study of Section 5 concerning the thermo-
dynamic limit L →∞. The other terms, which represent
the finite-size corrections to this dominant contribution,
decay exponentially with L.

We may also compute the second moment

see equation (6.25) above.

The dominant behavior of the variance of the number of
blobs is thus given by

〈(2k)2〉L,Γ − (〈2k〉L,Γ )2 =

2σLδ2

sinh4(δΓ )
(cosh(2δΓ )− 4δΓ coth(δΓ ) + 3) + ... (6.26)

In the symmetric case δ = 0, the generating function may
be more explicitly computed as

∞∑
k=1

zkB2k
L (Γ ) = L−1

p→L

(
Γztanh[Γ∆(p)]

√
pσ(cosh2[Γ∆(p)]− z)

)

=
+∞∑

n=−∞

(
e−

σL
Γ2 (α+nπ)2

− e−
σL
Γ2 (π2 +nπ)2

)
,

(6.27)

where α = ArcCos
√
z ∈ (0, π2 ) for z ∈ (0, 1). In particular,

the average and the variance of the number of blobs read:

〈2k〉L,Γ = 2
σL

Γ 2
+

+∞∑
n=1

4
σL

Γ 2

(
1− 2

σL

Γ 2
n2π2

)
e−

σL
Γ2 n

2π2

(6.28)

〈(2k)2〉L,Γ − (〈2k〉L,Γ )2 =
4σL
3Γ 2

+ ..., (6.29)

where Γ = Γeq(T ), and where the dots represent terms
that are exponentially small in (L/Γ 2).

7 Non-equilibrium dynamics starting from
a zero-temperature initial condition

As explained in Section 3.2, the dynamics at temperature
T for t > 0 starting from a zero-temperature initial con-
dition at t = 0, i.e. after a quench to T = 0 for t < 0, can
be described by the renormalization procedure, where the
renormalization scale Γ now corresponds to time via

Γ (t) = T ln
t

t0
(7.1)

as in references [18,19]. The dynamics takes place up to
time teq where equilibrium at temperature T is reached:

T ln
teq

t0
= Γeq(T ). (7.2)
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In the symmetric case, we thus have the scaling

teq ∼ Γ 3
eq(T ) ∼ T 3(lnT )3, (7.3)

whereas in the biased case

teq ∼ exp

 3 ln 1
δ2σ

4
(

1− T
Tc

)
 . (7.4)

All the quantities computed before for the equilibrium at
temperature T as functions of Γeq(T ) have the same ex-
pressions for the dynamics as functions of Γ (t) = T ln t for
large time t < teq. For instance, in the symmetric case, the
typical length of blobs behaves as

l(t) ∼ Γ 2(t)
σ
∼ (T ln t)2

σ
, (7.5)

whereas in the biased case, the typical lengths of blobs in
the domains z > 0 and z < 0 behave respectively as

l+(t) ∼ 1
4δ2σ

e2δΓ (t) ∼ 1
4δ2σ

t2δT =
σ

q2
0

t
q0T
σ , (7.6)

l−(t) ∼ Γ (t)
2δσ

∼ T ln t
2δσ

=
T ln t
q0
· (7.7)

8 Conclusion

In this paper, we have proposed a new approach based on
a disorder-dependent renormalization procedure to study
the localization of random heteropolymers at the inter-
face between two selective solvents within the model of
Garel et al. [2]. The renormalization procedure has been
defined to construct an effective thermodynamics, where
one only considers the heteropolymer configurations that
correspond to the optimal Imry-Ma domain structure.
At high temperatures, where the distribution of absolute
charges of blobs generated by the renormalization proce-
dure becomes infinitely broad, the effective thermodynam-
ics is expected to become accurate and to give asymptotic
exact results. With the renormalization approach, we have
recovered that a chain with a symmetric distribution in
hydrophilic/hydrophobic components is localized at the
interface at any finite temperature in the thermodynamic
limit, whereas a dissymmetry in hydrophilic/hydrophobic
components leads to a delocalization phase transition, in
agreement with previous studies. In addition, for both
cases, we have given explicit expressions for the high tem-
perature behaviors of various physical quantities charac-
terizing the localized phase, including in particular the
free-energy per monomer, the distribution of the blob
lengths in each solvent and the polymer density in the
direction perpendicular to the interface. For the case of
a small dissymmetry in hydrophobic/hydrophilic compo-
nents, where the delocalization transition takes place at
high temperature, the renormalization approach allows to
study the critical behaviors near the transition: we have
found that the free energy presents an essential singularity

at the transition, making all of its derivatives continuous
at Tc (infinite order transition), that the typical length
of blobs in the preferred solvent diverges with an essen-
tial singularity, whereas the typical length of blobs in the
other solvent diverges algebraically. We have then studied
the finite-size properties of the problem by considering
cyclic finite (large) chains. In particular, we have given
the probability distribution of the delocalization temper-
ature for the ensemble of chains of fixed finite length L,
and the distribution of the numbers of blobs in the chain
still localized at some temperature. Finally, we have briefly
discussed the non-equilibrium dynamics at temperature T
starting from a zero-temperature initial condition.

In conclusion, the disorder-dependent renormalization
approach yields explicit predictions for the high tem-
perature behaviors of various physical quantities, that
would certainly be interesting to test precisely by numer-
ical studies. In particular, the predictions concerning the
critical behaviors near the delocalization transition are
certainly surprising, and disagree with the Monte-Carlo
studies of reference [5] where power laws were found, and
with the Replica Gaussian variational approach of refer-
ence [7] where the transition was found to be of second
order. It would thus be particularly worthy to test nu-
merically more precisely the order of the transition. We
hope that the predictions of the renormalization approach
concerning the finite-size properties of the problem pre-
sented in Section 6 will make easier the comparison with
numerical studies. Finally, we would like to stress that
the renormalization approach yields not only predictions
for averages over the quenched disorder, but also precise
predictions sample by sample. For instance, for a given
realization of the quenched charges, one may compare the
typical configurations of the heteropolymer at equilibrium
at temperature T with the blobs structure obtained by
the numerical implementation of the renormalization pro-
cedure up to scale Γeq(T ). For the case of cyclic chains,
one may also test numerically sample by sample the renor-
malization prediction for the delocalization temperature.

It is a pleasure to thank T. Garel, H. Orland, and E. Guitter
for fruitful discussions, and T. Garel for his useful remarks on
the manuscript.

Appendix A: Imry-Ma argument
for the probability distribution of blob lengths

In this appendix, we recall the determination via a di-
rect Imry-Ma argument [25] of the asymptotic behavior
of the probability distribution of blob lengths in the limit
of small lengths, and compare it with the renormalization
result.

As noted by Garel and Orland [25], one may extend the
usual Imry-Ma argument for the heteropolymer exposed
in reference [2] to obtain not only the scaling of the typical
length of Imry-Ma domains, but also some information on
the probability distribution of the length of domains. The
idea is as follows [25]. On one hand, the energy associated
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to a blob of length l is the sum of l independent random
variables and is thus typically given by

El = −u
√

2σl, (A.1)

where u is a random variable of order 1, that has at least
to be positive since the system tries to use the favorable
fluctuations of the disorder to lower its energy. According
to [25], the probability distribution for large u is simply
given by the Gaussian of the Central Limit Theorem:

G(u) ∼
u→∞

e−u
2/2. (A.2)

The behavior of the distribution G(u) for small u seems
however not simple to determine a priori, because the
small values of u are certainly suppressed with respect
to the Gaussian distribution. Indeed, if an Imry-Ma do-
main corresponds to a small value of u, it is very likely
that the heteropolymer will prefer an organization into
other Imry-Ma domains. It seems however difficult to write
precisely the consequences of this effect on the distribu-
tion G(u). On the other hand, the entropy associated to
a blob of length l behaves as (− 3

2 ln l) (in [2], only powers
of l were considered for the symmetric case and thus ln l
was replaced by l0 ∼ 1, but here for a better comparison
with the renormalization approach, it is more convenient
to keep this ln l dependence). The minimization of the free
energy per monomer

f(l) ∼ −
√

2σ
l
u+

3
2
T

ln l
l

(A.3)

with respect to l leads to

u ∼ 3T√
2σ

ln l√
l
· (A.4)

The typical blob length ltyp corresponding to utyp ∼ 1
thus satisfies

√
ltyp

ln ltyp
∼ 3T√

2σutyp

· (A.5)

Since within the RG approach ltyp = Γ 2
eq(T )

σ , the above
equation corresponds to equation (4.10) with the choice
utyp ∼

√
2 i.e. a numerical factor of order 1. Now intro-

ducing the rescaled length of Imry-Ma domains

λ =
l

ltyp
, (A.6)

we find that it is simply related to the random variable u
through

u ∼ 1√
λ
· (A.7)

The behavior (A.2) of the distribution G(u) at large u thus
corresponds to the following behavior of the distribution
P (λ) at small λ:

P (λ) ∼
λ→0

1
λ3/2

e−
C
λ (A.8)

where C is a constant of order 1. This asymptotic behav-
ior corresponds exactly to the behavior (4.20) found via
the renormalization approach. Concerning the behavior of
G(u) for small u, we explained above why it is difficult to
determine it a priori. Using the relation (A.7), the asymp-
totic behavior (4.19) found via the RG approach

PRG(λ) ∼
λ→∞

e−
π2
4 λ (A.9)

would correspond to

G(u) ∼
u→0

1
u3

e−
C′
u2 (A.10)

i.e. a very strong suppression of small values of u for the
energies of Imry-Ma domains.
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